The generator matrix

 1  0  0  0  0  0  0  1  1  1  0  1  X  1  1  0  1  1  1  0  X  X  1  1  0  X  0  X  1  1  X  0  0  X  0  1  1  1  1  0  1  1  0  X  1  1  1  1  0  1  X  0  1
 0  1  0  0  0  0  0  0  0  0  0  0  0  0  X  X  X  1 X+1  1  1  1 X+1 X+1  1  1  0  1  1 X+1  1  X  1  X  X  1  1  0  1  X  X  0  1  0  1 X+1  X X+1  X X+1  1  1  1
 0  0  1  0  0  0  0  0  0  0  0  0  0  X  0  0  X  0  0  0  0  0  X  X  X  X  X  X  X  X  0  X X+1  1  1 X+1  1  1  1  1  1  1  1  1  1  1 X+1  1  1 X+1  1 X+1 X+1
 0  0  0  1  0  0  0  0  0  X  X  1  1 X+1 X+1  1  1 X+1 X+1  1  0  1  1  X  1  X  1  1  0  X  X  X  0 X+1  0  1  0  1 X+1  X  0  X  X  X  1  0  0 X+1  1  1  1 X+1  1
 0  0  0  0  1  0  0  X  1 X+1  1  0  1  1  1 X+1  X X+1  1  X  1  1  0  X X+1 X+1  0  X X+1  X  X  X  1  1 X+1  0  1  1 X+1 X+1  0  0 X+1 X+1  0 X+1 X+1  0  0  0  1  X X+1
 0  0  0  0  0  1  0 X+1  1  0  1  X X+1 X+1  0  X X+1 X+1  X  0  0  X  X  0 X+1 X+1 X+1  1  1  1  1  X  1 X+1  0 X+1  0  0  1  1  X X+1  1  X  1  1  0  X X+1 X+1  1  0  1
 0  0  0  0  0  0  1  1  X  1  1 X+1  X  1  X  1  X  0  1  1  1  0  X X+1 X+1  X  1  0  1  X  1  1  X X+1  0  X  0  1  0 X+1  1  X  1  1  0 X+1  X  0 X+1  1  X  X  1

generates a code of length 53 over Z2[X]/(X^2) who�s minimum homogenous weight is 42.

Homogenous weight enumerator: w(x)=1x^0+258x^42+754x^44+1264x^46+1602x^48+1960x^50+2252x^52+2342x^54+2213x^56+1666x^58+1122x^60+628x^62+222x^64+68x^66+24x^68+6x^70+1x^80+1x^88

The gray image is a linear code over GF(2) with n=106, k=14 and d=42.
This code was found by Heurico 1.16 in 29.9 seconds.